99 research outputs found

    Large-Scale Computational Analysis of Protein Arrangement in the Lipid Bilayer

    Get PDF

    Synthesis of 6- or 7-substituted 1,2,3,4-tetrahydroisoquinoline- 3-carboxylic acids

    Full text link
    A straightforward approach for the synthesis of several new, aryl-substituted derivatives of the conformationally constrained phenylalanine analogue 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) is described. Tic, nitro-substituted at the 6 or 7 position, was prepared by base-catalyzed cyclization of diethyl acetamidomalonate with α,α-dibromo-4-nitro-o- xylene followed by decarboxylation and deacylation under refluxing conditions in aqueous HCl. Catalytic hydrogenation of nitro-Tic in the presence of 10% Pd/C afforded amino-Tic, which was then converted to iodo-Tic by a modified Sandmeyer reaction. Both amino- Tic and iodo-Tic can easily be transformed to other substituents.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43174/1/10989_2004_Article_190726.pd

    The role of hydrophobic interactions in positioning of peripheral proteins in membranes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Three-dimensional (3D) structures of numerous peripheral membrane proteins have been determined. Biological activity, stability, and conformations of these proteins depend on their spatial positions with respect to the lipid bilayer. However, these positions are usually undetermined.</p> <p>Results</p> <p>We report the first large-scale computational study of monotopic/peripheral proteins with known 3D structures. The optimal translational and rotational positions of 476 proteins are determined by minimizing energy of protein transfer from water to the lipid bilayer, which is approximated by a hydrocarbon slab with a decadiene-like polarity and interfacial regions characterized by water-permeation profiles. Predicted membrane-binding sites, protein tilt angles and membrane penetration depths are consistent with spin-labeling, chemical modification, fluorescence, NMR, mutagenesis, and other experimental studies of 53 peripheral proteins and peptides. Experimental membrane binding affinities of peripheral proteins were reproduced in cases that did not involve a helix-coil transition, specific binding of lipids, or a predominantly electrostatic association. Coordinates of all examined peripheral proteins and peptides with the calculated hydrophobic membrane boundaries, subcellular localization, topology, structural classification, and experimental references are available through the Orientations of Proteins in Membranes (OPM) database.</p> <p>Conclusion</p> <p>Positions of diverse peripheral proteins and peptides in the lipid bilayer can be accurately predicted using their 3D structures that represent a proper membrane-bound conformation and oligomeric state, and have membrane binding elements present. The success of the implicit solvation model suggests that hydrophobic interactions are usually sufficient to determine the spatial position of a protein in the membrane, even when electrostatic interactions or specific binding of lipids are substantial. Our results demonstrate that most peripheral proteins not only interact with the membrane surface, but penetrate through the interfacial region and reach the hydrocarbon interior, which is consistent with published experimental studies.</p

    Life at the border: Adaptation of proteins to anisotropic membrane environment

    Full text link
    This review discusses main features of transmembrane (TM) proteins which distinguish them from water‐soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co‐translational and post‐translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large‐scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen‐bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region—between double bonds and carbonyl groups of lipids. These “midpolar” regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side‐chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein–lipid binding.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108308/1/pro2508.pd

    Structural organization of G-protein-coupled receptors

    Full text link
    Atomic-resolution structures of the transmembrane 7-α-helical domains of 26 G-protein-coupled receptors (GPCRs) (including opsins, cationic amine, melatonin, purine, chemokine, opioid, and glycoprotein hormone receptors and two related proteins, retinochrome and Duffy erythrocyte antigen) were calculated by distance geometry using interhelical hydrogen bonds formed by various proteins from the family and collectively applied as distance constraints, as described previously [Pogozheva et al., Biophys. J., 70 (1997) 1963]. The main structural features of the calculated GPCR models are described and illustrated by examples. Some of the features reflect physical interactions that are responsible for the structural stability of the transmembrane α-bundle: the formation of extensive networks of interhelical H-bonds and sulfur–aromatic clusters that are spatially organized as 'polarity gradients' the close packing of side-chains throughout the transmembrane domain; and the formation of interhelical disulfide bonds in some receptors and a plausible Zn2+ binding center in retinochrome. Other features of the models are related to biological function and evolution of GPCRs: the formation of a common 'minicore' of 43 evolutionarily conserved residues; a multitude of correlated replacements throughout the transmembrane domain; an Na+-binding site in some receptors, and excellent complementarity of receptor binding pockets to many structurally dissimilar, conformationally constrained ligands, such as retinal, cyclic opioid peptides, and cationic amine ligands. The calculated models are in good agreement with numerous experimental data.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42965/1/10822_2004_Article_200887.pd

    Cyclic, disulfide- and dithioether-containing opioid tetrapeptides: Development of a ligard with high delta opioid receptor selectivity and affinity

    Full text link
    Tetrapeptides of primary sequence Tyr-X-Phe-YNH2, where X is D-Cys or D-Pen (penicillamine) and where Y is D-Pen or L-Pen, were prepared and were cyclized via the side chain sulfurs of residues 2 and 4 to disulfide or dithioether-containing analogs. These peptides are related to previously reported penicillamine-containing pentapeptide enkephalin analogs but lack the central glycine residue of the latter and were designed to assess the effect of decreased ring size on opioid activity. Binding affinities of the tetrapeptides were determined to both [mu] and [delta] opioid receptors. Binding affinity and selectivity in the tetrapeptide series were observed to be highly dependent on primary sequence. For example, L-Pen4 analogs displayed low affinity and were nonselective, while the corresponding D-Pen4 diastereomers were of variable affinity and higher selectivity. Among the latter compounds were examples of potent analogs in which selectivity shifted from [delta] selective to [mu] selective as the ring size was increased. The relatively high binding affinity and [delta] receptor selectivity observed with one of the carboxamide terminal disulfide analogs led to the synthesis of the corresponding carboxylic acid terminal, Tyr-D-Cys-Phe-D-PenOH. This analog displayed [delta] receptor binding selectivity similar to that of the standard [delta] ligand, [D-Pen2, D-Pen5] enkephalin (DPDPE), and was found to have a 3.5-fold higher binding affinity than DPDPE. All the tetrapeptides were further evaluated in the isolated mouse vas deferens (mvd) assay and all displayed opioid agonist activity. In general, tetrapeptide potencies in the mouse vas deferens correlated well with binding affinities but were somewhat lower. Receptor selectivity in the mvd, assessed by examining the effect of opioid antagonists on the tetrapeptide concentration-effect curves, was similar to that determined in the binding studies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27602/1/0000646.pd

    Translation of structure‐activity relationships from cyclic mixed efficacy opioid peptides to linear analogues

    Full text link
    Most opioid analgesics used in the treatment of pain are mu opioid receptor (MOR) agonists. While effective, there are significant drawbacks to opioid use, including the development of tolerance and dependence. However, the coadministration of a MOR agonist with a delta opioid receptor (DOR) antagonist slows the development of MOR‐related side effects, while maintaining analgesia. We have previously reported a series of cyclic mixed efficacy MOR agonist/DOR antagonist ligands. Here we describe the transfer of key features from these cyclic analogs to linear sequences. Using the linear MOR/DOR agonist, Tyr‐DThr‐Gly‐Phe‐Leu‐Ser‐NH 2 ( DTLES ), as a lead scaffold, we replaced Phe 4 with bulkier and/or constrained aromatic residues shown to confer DOR antagonism in our cyclic ligands. These replacements failed to confer DOR antagonism in the DTLES analogs, presumably because the more flexible linear ligands can adopt binding poses that will fit in the narrow binding pocket of the active conformations of both MOR and DOR. Nonetheless, the pharmacological profile observed in this series, high affinity and efficacy for MOR and DOR with selectivity relative to KOR, has also been shown to reduce the development of unwanted side effects. We further modified our lead MOR/DOR agonist with a C‐terminal glucoserine to improve bioavailability. The resulting ligand displayed high efficacy and potency at both MOR and DOR and no efficacy at KOR. © 2013 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 102: 107–114, 2014.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102641/1/bip22437.pd

    Design of high affinity cyclic pentapeptide ligands for Κ-opioid receptors

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73319/1/j.1399-3011.2005.00295.x.pd
    • 

    corecore